NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

HYPER-NPSNET:EMBEDDED MULTIMEDIA IN A 3D
VIRTUAL WORLD

by
Charles P. Lombardo
September 1993

Thesis Advisor: Dr. Michael J. ZYDA
Thesis Co-Advisor: LCDR John Falby, USN

Approved for public release; distribution is unlimited.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

e —————————— —
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT T\,(PE AND DAES COVERED
September 1993 | Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

HYPER-NPSNET:EMBEDDED MULTIMEDIA IN A 3D
VIRTUAL WORLD

6. AUTHOR(S)
Lombardo, Charles P.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZA’T’ION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy of positio

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT . i . . L. 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words) . i . L . .
As virtual world systems continue to evolve, the need exists to embed multimedia information ingo the

world so users can query objects for additional information while maintaining frame rates greaterjthan 1!
frames per second. The need also exists for software tools to aid in the creation of multimedia dqcumen
intended for virtual worlds. This thesis addresses the problems of how to attach/query multimedja
information to/from 3D locations in a virtual world and the design of a Graphical User Interface (GUI) to
facilitate the creation of multimedia documents. The method chosen is to attach the multimedia
information files to fixed 3D locations called Anchors. The anchors can be queried by the user gnd the
multimedia information retrieved. Through the same interface, users can create multimedia docugnents k
creating and/or editing anchor properties. The approach used differs from previous work in that ngvigatio
through the virtual world is unconstrained and a variety of information types may be attached to ja single
anchor. With video running and fully interactive navigation underway, the implementation presefted
gives rendering performance greater thanl5 frames per second for high-end graphics workstatigns.

14. SUBJECT TERMS X A A . i 15. NUMBER OF PAGES
Virtual Worlds, Virtual Environments, Hypermedia, Multimedia, User
Interface 6. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPOR:T_ OF THIS P_A_GE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Approved for public release; distribution is unlimited

HYPER-NPSNET: EMBEDDED MULTIMEDIA IN A 3D VIRTUAL WORLD

by
Charles P. Lombardo
GS12, Civilian DON
MS, University of Washington, Seattle, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL

September 1993

Author:

Charles P. Lombardo

Approved By:

Dr. Michael J. ZYDA, Thesis Advisor

LCDR John S. Falby, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

As virtual world systems continue to evolve, the need exists to embed multimedia in-
formation into the world so users can query objects for additional information while main-
taining frame rates greater than 15 frames per second. The need also exists for software
tools to aid in the creation of multimedia documents intended for virtual worlds. This thesis
addresses the problems of how to attach/query multimedia information to/from 3D loca-
tions in a virtual world and the design of a Graphical User Interface (GUI) to facilitate the
creation of multimedia documents. The method chosen is to attach the multimedia infor-
mation files to fixed 3D locations called Anchors. The anchors can be queried by the user
and the multimedia information retrieved. Through the same interface, users can create
multimedia documents by creating and/or editing anchor properties. The approach used dif-
fers from previous work in that navigation through the virtual world is unconstrained and
a variety of information types may be attached to a single anchor. With video running and
fully interactive navigation underway, the implementation presented gives rendering per-

formance greater thanl5 frames per second for high-end graphics workstations.

V.

TABLE OF CONTENTS

INTRODUGCTION ...t e et e e e e et e e e e s e e aa e e e s e eesabeeeeeeesaanaaeeeeens 1
A. THE IMPORTANCE OF HYPERMEDIA ... 1
B. THE NEED FOR HYPERMEDIA IN VIRTUAL ENVIRONMENTS............ 2
C. HYPER-NPSNET INTRODUCTION......ccttiiiieeiiiiieeeeeeeeee e 2
D. THESIS ORGANIZATION. ... ccitittiiieeeeeeiee ettt e e e e e e 5
SURVEY OF PREVIOUS WORK ... oottt 6
A. HYPERMEDIA DEFINITION. ..ottt ettt 6
B. THE VIRTUAL MUSEUM.......ootiii ettt eeeeens 7
C. THE INFORMATION VISUALIZER AND RELATED STUDIES................ 8
D. MEDIAVIEWottt et e et e e e e e e et e e e e e eaaaanns 10
E. WHAT IS SO SPECIAL ABOUT HYPER-NPSNET?.....cccovviiiiieiiiiiiiceeeeeeens 11
F. TERMINOLOGY CONVENTIONS ...t 12
HYPER-NPSNET SYSTEM REQUIREMENTS ..., 13
A. SOFTWARE REQUIREMENTS ..ottt 13
B. HARDWARE REQUIREMENTS......oiiiiiiiei et 15
1. Hard Disk Drive Capacity..........cccuuuuuuruuiiiiiiieeeeeeeeeeeeeeeeeeeeirsnnn e e e e eaaeaes 15
2. MBIMOIY et 16
3. INPULE DEVICES ...ttt e e e e e e e e e e e e e e e e s 16
HYPER-NPSNET DATA STRUCTURES ... 18
A. HYPERSYSTEM CLASSES ...ttt 18
I o 1Y/ 1= 1 o o = PR 18
2. ANCROK.. . e 20
3. HYPEISYSIEBM ... 22
B €1 (o] o F= 1 I 4 =T PR 25
B. GRAPHICAL USER INTERFACE (GUI) CLASSES........cccccvviiiiiiiieieeeeeenn, 27
L. MaIN PANEL..coee e 27
A, MENUDAT ... 28
D. PAN@I FACE ...oueieeeiee e 32
C. CONrOl ClaSS.....ccoiiiiiiii e e e 35
(o TR I £ (=Y O F= 1] 35
P AN ool oo T g o [(o] gl == Vo =1 HO PP 38
3. User Preferences Pane€l ... 43
HYPERMEDIA AUTHORING. ...ttt e e eeeeaaa 49

A. AUTHORING WITH HYPER-NPSNETcotttiiiiieiiiieee e 49
1. Creating ANeW WOrld ... 49
2. Adding New Anchors To An Existing World...............oouiiiiiiineen. 50
3. Saving The WOrIoo e eaaes 51
VI RESULTS Lttt ettt ettt et e e e e e e e e e e e e e e e e e bbbt bbb e e s e e e eeees 53
A. MINIMUM SOFTWARE CAPABILITY ..cooiiieiieeiieiiiiisee e e e e 53
B. HYPERMEDIA DATABASE CREATION....ccooiiiiiiiiieeeeven e 54
C. HARDWARE PERFORMANCE ...t 54
VII. FUTURE WORK ...ttt ettt e e e e e e e aaaaeeaeeaesaaannnns 56
A. DATABASE FRONT ENDcutiiiiiiiiiiiiiieieieeeeeeesitive et 56
B. NON-TERRAIN ANCHORSooiiiiitiiiiiiese st e et e e e e e e e eaees 56
1. VEhICIE ANCROIS. ...t e e e e e e e e 56
2. Temporal ANCROIS ... 57
C. NETWORKING ...ttt e e e e e e e e e e e e e eeeeeeennnnes 57
D. TERRAIN DATABASE LOADING CAPABILITIES.......cccccuviiiiiiiieiiiaeeenn. 57
E. MORE SOPHISTICATED AUTHORINGccoooiiiiiiiiiiiiiiiieeeeeeeeee e 58
F. USER INTERFACE DEVELOPEMENTooiiiiiiiiiiiiiiiiieeeeeeee e 58
G. STANDARDS COMPATIBILITY .ereeeeeiiieiiiiiiiee e e eeeee et en e e e e 59
I /1 | = P 59
2. HYHIME. e e e e e e 60
3. JPEG oottt e e aaaaaaaas 60
A, MPEG ...t a e e e e e e e e e e e e e a 60
APPENDIX: HYPER-NPSNET USER MANUALccoiiiiiiiiiiies e eee e 61
A. STARTING AND EXITING THE PROGRAMccccoiiiiiiiiiieeiiiiiieae e 61
B. LOADING AND SAVING HYPERMEDIA DATABASES.........cccccceeeeieennn. 61
C. MOVEMENT THROUGH THE VIRTUAL WORLD.........ccuttviiiiiiiiieeeeeeee, 61
D. TO CREATE OR EDIT INFORMATION ANCHORS..........coooiiiiiiiiireeeee 62
E. TO SET USER PREFERENCES ...ttt 63
F. ANCHOR SELECTION AND MULTIMEDIA QUERYING................eeenn. 63
LIST OF REFERENCES ...t e e e e e e e e e as 65
INITIAL DISTRIBUTION LIST ...ttt e e e e e 67

|. INTRODUCTION

As the evolution of real-time interactive 3D computer graphics continues, the need to
manage and administer vast amounts of information will continue as well. As new frontiers
are discovered, there will certainly be changes associated with the storage and retrieval of
information. One of these changes that has already taken hold is the concept of multimedia.
Multimedia consists of video and audio information in addition to the more usual text and
picture (i.e. graphics) information. Across many platforms, but mainly PCs and Macs, the
development of tools to aid in the creation of multimedia databases is quite active. One area
that has not been so populated with advancements is the area of virtual environments with
embedded multimedia. It is the focus of this work to embed multimedia capabilities into a
real-time interactive 3D virtual environment and develop the necessary user interface and
underlying data structures to make it all work; this is termed hypermedia. The system is
called Hyper-NPSNET and is a prototype of a future version of the popular battlefield
simulator NPSNET developed at the Naval Postgraduate School (NPS) [Zyda91][Zyda92].

A. THE IMPORTANCE OF HYPERMEDIA

There is a continuing need to manage not only data but the structure of data in the
computer dominated environments where an ever increasing number of us work and live.
The vast amounts of data are no longer simply binary numbers that must be crunched, but
highly detailed photographs, diagrams, electronic circuit layouts, video used in education
and in the media, endless news articles broadcast across vast computer networks, etc., etc.
We not only want to know the names of pictures and videos, we want to quickly scan the
available titles to make decisions on what may be relevant or deserving of further attention.
We would like the capability to scan the titles of every research paper or movie that has a
particular phrase in the title. For identification purposes, we may want to see a computer

generated picture of all employees that work for the computer science department and, after

selecting one or more, to see their performance reviews for the last six years. The point here
is that different forms of data exist and the need to develop methods of dealing with them

is one of the top computer software priorities for the future.

B. THE NEED FOR HYPERMEDIA IN VIRTUAL ENVIRONMENTS

As the whole Virtual Reality (VR) obsession explodes, many examples come to mind
of beneficial uses of VR. Many of these fall under the category of tutoring systems. These
may include the training of surgeons using virtual operating rooms, or the training of
military personnel in the use of weapons by submersing individuals in a virtual war time
environment. Examples like these go on and on and its clear that these kinds of systems can
only benefit from the addition of multimedia capabilities. Consider the intern surgeon
learning a procedure for cesarean section. Just using the virtual operating table may save
lives or allow the intern to learn the procedure quickly, but if the intern was also given the
capability to replay the operation or to retrieve video clips on the correct execution of some
aspect of the procedure, the overall benefit would be much greater. The system could
monitor the mistakes made and offer additional information that the intern should consider
in applying a particular technique. In addition to video clips, the intern may request certain
statistics during the operation. These may include the probabilities of complications from
any of a range of circumstances for this particular patient. The ability to query VR systems
for a range of information types on demand will allow a more complete immersion into the

virtual world.

C. HYPER-NPSNET INTRODUCTION
Within Hyper-NPSNET, there is the notion of the information anchor. These anchors
are repositories for a variety of multimedia information. The system can have a large

number of anchors, each with hooks into video, audio, textual and graphics media. The user

navigates through the system and chooses, either directly or through proximity to an
anchor, the multimedia information to view or hear.

In the current system, the user interface consists of multiple Motif panels to administer
the information anchors and a Silicon Graphics Incorporated (SGI) GLX Widget for
rendering the virtual world. A 3D terrain database is read and used with texture information
to create the ground of the virtual world. A multitude of buildings, trees, rocks, telephone
poles and other miscellaneous objects populate the world. The end user typically loads an
anchor database through the use of pull-down menus and pop-up windows (see
“LOADING AND SAVING HYPERMEDIA DATABASES” in the Appendix). This
database is created through the “Authoring” capabilities of the system (see “AUTHORING
WITH HYPER-NPSNET"” in Section V.). Typically the user chooses to have the anchors
visible at all times. This is a visual cue of where the information anchors are attached to the
world. The user can trigger any of the available multimedia information by first selecting
an anchor and then pressing one of the four buttons: Audio, Video, Graphics or Text on the
Hyper-NPSNET main control panel. To select an anchor, the user either selects it with the
mouse directly in the 3D world, or chooses it off a list of available anchors displayed in the
main control panel. Upon selection of an anchor, the main control panel displays the current
anchor name, type and coordinates. In addition, the current anchor is highlighted on the
scrolling list of all available anchors. If the user selects the anchor off of the list, then the
viewing point in the rendering window is transported to the location of the anchor in the 3D
world. This is referred to as an instant aspect change. No matter how the anchor is selected,
the user knows what kind of multimedia information is available for this anchor by which
of the Audio, Video, Graphics and Text buttons are sensitive.

To gain access to all the anchors in the system, the user navigates through the world
using either a Spaceball, Ascension Bird or standard 2D mouse. Through trials, it was

determined that the most intuitive device and a device found on virtually every workstation

was the 2D mouse. The Spaceball made it easy to move around, but difficult to pick anchors
within the 3D world. The Ascension Bird introduced a disconcerting shakiness to the
display that could not be overcome.

The user has a number of preferences that can be set through the use of the
“Preferences” pop-up panel. Here the user can specify whether to fly around the world or
drive on the terrain. If driving, the user steers left or right by moving the cursor left or right
outside a small control square in the middle of the rendering window. To speed up, move
the mouse up, to slow down or go backwards, move the mouse down. If flying, the heading
is set with the left-right motion of the mouse, and the pitch is set using the up-down motion
of the mouse. This leaves the speed to be controlled by some other means, so the user can
specify the flight speed in the preferences panel. The user can also specify whether local
anchors only are to be displayed. If local anchors only are being displayed, the user can
specify the range that defines what local is. The default value is 300 meters (the current
terrain is 2 km by 2 km) meaning that only anchors within 300 meters of the current position
of the user are displayed. The last thing the user can specify in the preferences pop-up panel
is whether anchor information is displayed automatically as the user gets close to one of the
anchors. If chosen, the user can specify the range used to trigger the multimedia
information and can choose what information is automatically displayed. The default is
Anchor Auto View off with a range of 20 meters and Audio media tagged. So if the user
sets Anchor Auto View on and leaves other default values alone, then anchor audio tracks
will play anytime the user gets within 20 meters of an anchor. This is knownds
Landmines

Hyper-NPSNET can be used as an authoring tool for hypermedia. To build a new
hypermedia database, the system is brought up without loading an anchor database. The
user then creates all the anchors and attaches all the multimedia using the Anchor Editor

Tool. For existing anchors, the editor is used to change any of the values for the anchor:

name, type, coordinates, orientation, audio track filename, video filename, graphics
filename and text filename. For new anchors, the user simply enters all the information
about the new anchor and saves it to the system. An anchor will appear in the 3D location
specified by the coordinates and will have all of the multimedia information available for
viewing or hearing. Note that the audio, video, graphics and text files have already been
created so the role of Hyper-NPSNET is a multimedia player not recorder, but it could
easily be a recorder through the addition of a video cam and some software (see “FUTURE

WORK?” on page 56).

D. THESIS ORGANIZATION

In Chapter Il, a survey of appropriate previous work is presented. This is followed by
a discussion of the system requirements necessary to implement Hyper-NPSNET in
Chapter Ill. Chapter IV presents the underlying data structures for the hypersystem and
graphical user interface. How Hyper-NPSNET is used as an authoring tool is covered in
Chapter V, and the results of this work are in Chapter VI. Recommendations for further
work are in Chapter VII. This is followed by the appendix, containing the Hyper-NPSNET

user manual. The appendix is followed by the list of references.

II. SURVEY OF PREVIOUS WORK

In the last few years, a number of multimedia systems have been developed and
marketed. The majority of these are designed to be run on PC class machines and therefore
cannot sport a fully interactive real time virtual world interface. The question: When would
a fully interactive 3D multimedia system be required? This question is not easily answered,
but if the capability and the cost of the hardware were not at issue, there would be many
more such systems available than there currently are.

It is difficult to find information on or hear of these kinds of systems. The best sources
are the journals, but these articles seldom give any substantial clues to the underlying
design. Rather they describe the application and leave the rest to the imagination. The
following sections present summaries of three real-time interactive hyper-media systems.
The first is an interactive walk through of a virtual museum built with an object-oriented
toolkit designed to aid in the construction of distributed multimedia applications. The
second is a fully interactive 3D information system, with the third being a multimedia

publication and document structuring system. First, let’s define what hypermedia is.

A. HYPERMEDIA DEFINITION
Hypermedia is defined [Halasz88] as:

Hypermedia is a style of building systems for informatiepresentatiorand
managemenaround a network of multi-media nodes connected together by
typed links. Such systems have recently become quite popular due to their
potential for aiding in the organization and manipulation of irregularly structured
information in applications ranging from legal research to software engineering.

Nielsen defines Hypertext as the nonsequential access of text, and Hypermedia as the
nonsequential access of different media including text [Nielsen90]. This definition is rather

vague and differs from Halasz’s definition in so much that Halasz suggests that the

interface should represent the structure of the system. By this he means the network of the
inter-connecting links and nodes within the system.

The basic physical definition of what a hypertext or hypermedia system is can be
explained using a simple example about a hypertext document from [Nielsen90] (see
Figure 1).

Assume that you start by reading the piece of text makkeéwstead of a single

next place to go, this hypertext structure has three options for the reader: Go to
B, D, or E. Assuming that you decide to goBpyou can then decide to go@o

or toE, and fromE you can go td®. Since it was also possible for your to go
directly fromA to D, this example shows that there may be several different paths
that connect two elements in a hypertext structure.

Figure 1: Simplified view of a small hypertext structure having six
nodes and nine links

B. THE VIRTUAL MUSEUM

TheVirtual Museums a walk through of a simulated museum with displayed artifacts
that can be interacted with by the user [de Mey93]. The main focus of this work is the
design of an object oriented “Multimedia Component Kit”. The components are used to
assemble multimedia applications. The Virtual Museum is an example application
implemented using media objects from the component kit. These objects are responsible for

navigation, rendering and media stream input/output, among others.

The user interacts with the museum by navigation and selection of artifacts. The types
of artifacts include still pictures and animated video sequences projected onto different
surfaces. The software also includes a sound server to maintain the audio feedback to the
user. As the user navigates the museum, various artifacts are visible in a reduced resolution
rendering. At a certain point when the viewer is close enough, the artifact is displayed in its
maximum resolution. If the artifact involves video, the animation starts. Various aural cues
are triggered as the user moves about.

Applications built using the component toolkit (including the virtual museum) are
constructed using visual composition. This means that once media objects are defined, like
the navigation object, they can be connected together interactively to form applications.
Actually, iconic representations of the objects are connected together using the mouse. The
objects have interfaces through which they are connected to other objects. These interfaces
are also shown on the icon. Using thesmnection pointsthe user assembles the

application.

C. THE INFORMATION VISUALIZER AND RELATED STUDIES

The Information Visualizeis a real time interactive 3D information displaying front
end to an information storage system developed at the Xerox Palo Alto Research Center
(Xerox PARC) [Card91]. The main focus of the system is 1) the use of 3D/Rooms for
increasing the immediate storage capacity, 2) the user interface to couple the user to the
information agents, and 3) 3D visualization for real time interaction with the data.

The overall concern of the Information Visualizer is to allow access to more
information more quickly than otherwise possible. As pointed out in [Card91], there is a
cost structure associated with the retrieval of information. The analogy is made to an office
and the different types of information readily available, like file cabinets and computer-

based information retrieval systems. If the office layout is designed well, the costs of

accessing the information will be minimal. For instance, a Rolodex is kept on the desk, so
the cost of retrieving phone numbers is low. This makes sense because the Rolodex is used
frequently. For less frequently used storage media like the filing cabinet, the information is

in a higher cost structure. At the highest cost might be information not available in the
office at all, but at the local public library. The desk side information is considered
Immediate Storagethe file cabinet is considere&gecondary Storagand the library is
Tertiary Storage.

Once the cost structure of information is realized, then the cost of assimilation
becomes important. The Information Visualizer attempts to minimize these costs by
utilizing Information WorkspacesComputer screens play the roll of workspaces.
Immediate storage information is displayed on the workspace as menus, windows and
icons. Secondary storage is represented as virtual rooms each having multiple workspaces.
The 3D/Rooms can be navigated, by the user, to explore the information system. The users
orientation can be changed and objects can be manipulated with the mouse. Using
navigation, for example, the user can zoom in to show more detail anywhere in the room.

In related studies at Xerox PARC, information is displayed using animated real time
3D computer systems. In one of these studies, the concepfafe Trees presented
[Robertson91]. Cone trees are hierarchies laid out in three dimensions. In the study, a cone
tree was used to develop a UNIX file browser. The cone tree represents the directory
structure, with each node representing a directory in the file system. The display shows the
directory structure as a cone facing down. The root directory is at the top. The user can
select any directory using the mouse. Upon selection, the entire directory structure rotates
until the chosen directory is in front of the user. It was determined that an immediate change
of the display was disorienting to the user, so animation was incorporated to allow the user

to perceive the change.

The cone tree paradigm works well with any hierarchical information system, but for
vast systems with little hierarchy, tRerspective Wakupports efficient use of space and
time [Mackinlay91]. The Perspective Wall allows the visualization of large linear or nearly
linear data sets. The display shows a wall directly in front of the user where information is
presented. On either side of the front wall is another wall angled back with the appearance
of being folded. The folding metaphor is used to distort the 2D layout into a 3D
visualization. The center wall is for viewing detail and the side walls are for viewing
context. The user can select any feature on any wall with the mouse. Once selected, the wall
moves that item to the center panel with a smooth animation. As in the Cone Trees, this

animation helps the user perceive the change in the displayed system.

D. MEDIAVIEW

MediaView is an editable multimedia publication system[Phillips91]. Even though
MediaView does not incorporate any Virtual World paradigms, it does allow for real time
audio, video and graphics to be imbedded into documentation. The user interface is based
on the what-you-see-is-what-you-get (WY SIWYG) word processor metaphor. Text and all
multimedia objects are subject to the select/cut/copy/paste operations of most modern word
processors. This makes manipulating existing multimedia very easy and allows for the
creation of multimedia documents by nonspecialists.

The potential applications for MediaView are numerous. Imagine fully interactive
textbooks that would allow students to query the system for additional information about
any number of topics in a nonsequential manner. In fact, selected chapBennpdter
Graphics: Principles and Practichave been transformed into MediaView documents,
making it possible to animate algorithms, explore mathematical expressions, and view 3D
databases. Additional potential lies in such areas as interactive scientific visualization for

Science and Engineering, and digital patient records for Medicine, where photographs or

10

medical data like EKG results can be presented. Training systems can incorporate video

segments in a multimedia shop manual.

E. WHAT IS SO SPECIAL ABOUT HYPER-NPSNET?
Hyper-NPSNET is different from the examples above and from all other such systems
that the author is aware partly because of the unconstrained virtual world that the

hypermedia links and nodes are embedded in. Within Hyper-NPSNET the user can move

through-out the virtual environment unconstrainethis differs from the Information
Visualizer because in that system the user can only “wonder” where there is data. In Hyper-
NPSNET, the user can navigate over barren terrain even if there are no information nodes
present. The user may be training to drive a tank while looking for enemy vehicles or
looking for landmarks. Information nodes are not everywhere, they must be found. Another
unique feature of Hyper-NPSNET is the ability to attach up to four distinct types of media
information to one physical location. This differs from the Virtual Museum in that only one
artifact is placed at any location.

Upon approaching an anchor, the user can query it for additional information. These
gueries can be for information about the current anchor’s location and orientation in the
world or for a playback of some audio or video track that has been attached to the anchor
by the author of the data set. The user can also select any anchor off of a list of all nodes in
the system. As these nodes are visited, links are established, allowing the user to “Back out”
in the reverse order of the initial visits. These features make Hyper-NPSNET unique from

the previous work cited in this chapter.

1. That is until the user hits the edge of the world. Currently the world is on a 2km terrain. Upon
reaching the edge, the user must turn back in to interact with anything meaningful.

11

F. TERMINOLOGY CONVENTIONS

The terminology used for the remainder of this thesis differs slightly from that
established by [Nielsen90]. A 3D location in the virtual world that has an identity and the
capability to attach audio, video, graphics or textual information is callédeor Each
anchor can have associated with it up to foodesof distinct types. Each node is
represented by the audio, video, graphics or text file attached to linA$are established
between anchors, and between an anchor and it's associated information nodes, but not
between information nodes. So after visiting Zydaville 1, if the user then visited the
Command Post, a link is established between them, allowing the user to revisit Zydaville 1
by backing up with th&ackbutton on the Hyper-NPSNET main control panel. All the

anchors, links and information nodes compriseHiipersystem

12

[ll. HYPER-NPSNET SYSTEM REQUIREMENTS

Hyper-NPSNET is written in C++ and runs on commercially available SGI IRIS
workstations in all its incarnations. The hardware and software requirements are discussed

in more detail in the following sections.

A. SOFTWARE REQUIREMENTS

The software for Hyper-NPSNET consists of 16 C++ classes each with a specification
file (i.e. .H file) and an implementation file (i.e. the .C file). In addition to the classes, there
are 13 C++ .Cfiles, 9 .H files and an assortment of other miscellaneous files. The total word

count output looks like:

157 489 4269 Anchor.C
67 300 2317 Anchor.H
626 2078 19674 Control.C
87 376 3361 Control.H
1207 4572 43028 EditAnchor.C
76 344 3043 EditAnchor.H
353 1401 11497 Face.C
41 142 1154 Face.H
485 1530 14218 FileInfo.C
53 173 1561 FileInfo.H
9 16 247 Fileops.C
71 210 2214 Global.C
93 529 4310 Global.H
210 670 5863 Graphic.C
43 134 1178 Graphic.H
101 270 3023 Hnode.C
59 199 1764 Hnode.H
16 43 487 Hstack.C
23 70 675 Hstack.H
237 639 6134 Hsystem.C
57 223 1886 Hsystem.H
299 1101 10007 Lister.C
51 169 1468 Lister.H
923 3215 30484 MenuBar.C
78 250 2276 MenuBar.H
29 92 809 MessBox.C
25 44 455 MessBox.H
150 410 4490 Panel.C

Figure 2: File sizes in lines, words and characters for Hyper-NPSNET software

13

53
1044
69
156
29
832
75
316
59
90

119
1054
112
70
50
86
86
365
23
20
10
76
139
64

82
279
73
198
60
36
208
25
67
398
12064

Figure 2: File sizes in lines, words and characters for Hyper-NPSNET software
(Continued)

Notice in the last line of Figure 2 above, the total number of lines of code for Hyper-
NPSNET is about 12000. This does not include any of the supporting code that is used to
define and display objects or that for the displaying of image files. For defining and

displaying the 3D objects in the world, the NPS Graphics Description Language

144
3722
309
651
61
2592
251
858
144
229
45
510
3750
416
217
136
328
300
1654
64
a7
41
194
389
182
11
236
1074
251
888
209
115
755
72
195
1489
42218

1315
34862
2734
4947
589
24135
2102
6122
1327
1768
318
3367
29978
3372
1860
1160
2446
1917
12061
486
372
410
2012
3432
1861
124
1736
9101
2041
7015
1920
463
6321
777
1890
10611
368844

Panel.H
Preferences.C
Preferences.H
TextBox.C
TextBox.H
Xlnput.h
butt.H
cube.C
cube.H
disdefs.h
externs.h
getsgi.C
glDraw.C
glDraw.H
hyper.C
hyper.H
image.H
image_types.H
io.C
main.C
materials.h
objectsDraw.C
rdobj_funcs.h
readfiles.c
shapes.C
shapes.H
simnet.h
spaceball.C
spaceball.H
stationaryObjects.C
stationaryObjects.H
test.C
unite.C
unite.H
utils.C
viewbounds.C
total

14

(NPSGDL) system is used. NPSGDL was written at NPS and is a high level language for
the specification and manipulation of 3D objects [Wilson92]. For the display of image files,
a package also developed at NPS called NPSImage is used.

All the C++ code is AT&T C++ 3.0 compliant. There is some miscellaneous C code
written in ANSI C 3.1. The complete user interface is written in the native Motif on IRIX
Version 4.0.5. All of the above comprise the minimum requirement for porting this
software to another platform. Note that the rendering is done in a GLX Widget that allows

SGI Graphics Library (GL) rendering in a Motif widget.

B. HARDWARE REQUIREMENTS

The hardware requirements for Hyper-NPSNET parallel the software requirements as
discussed above. A specific hardware requirement is audio capability. This coupled with
the GL rendering require the code be run on an SGI IRIS platform. Beyond this, there is the

consideration of disk space, memory and input devices.

1. Hard Disk Drive Capacity

Currently the audio and video formats used for the hypermedia are in a relatively
uncompressed format. Typical movieplayer video files used by Hyper-NPSNET range
from 700KB to 23MB in size. Yes that IS 23,000,000 bytes. The audio files range from
300KB to 2MB in size. This implies that for a hypermedia database consisting of 50
information anchors with unique audio and video links, the required disk space above and
beyond the operating system and all normal user requirements is about 550MB. This
assumes an average video size of 10MB and an average audio size of 1MB; rather
conservative estimates. This doesn’t take into account the size of the terrain database, nor
the image or text storage requirements. As compression techniques improve and become
more widespread, these number will certainly change. A near term option that is being

looked at for a future version of Hyper-NPSNET uses the Cosmo compress option.

15

2. Memory

Other than disk space, the amount of memory local to a machine plays an
important role in how quickly and smoothly the audio and video clips are played. Typical
memory requirements range from a minimum of 32MB to over 100MB. Since Hyper-
NPSNET has only been run on SGI machines, it is not clear how well the system would run

on a machine that typically doesn’t deal in these kinds of numbers.

3. Input Devices

A number of input devices were used throughout the evolution of Hyper-
NPSNET. All of the input devices to be discussed useceyteball in handmetaphor
[Robertson91]. The first to be tried was the 6 degree of freedom Spaceball. For users
familiar with the spaceball, navigation is quite intuitive. The ball is grasped in the hand and
is used to manipulate viewpoint motion. The major drawback with the spaceball is the
difficulty in using it as a pick device. In order to select anchors in the 3D world, the cursor
must be manipulated so as to orient it on top of an information anchor. This was near to
impossible to do in a coordinated way with the spaceball.

The second device that was used wa®\$eension BirdThe Ascension Bird is
a 6 degree of freedom mouse, that is held by the user and allowed to move not only on a
typical 2D surface but also up and down. The hardware includes a transmitter that generates
a strong magnetic field, and a receiver to sense the field. As the Bird is moving in 3D space,
the varying magnetic field is converted back to 3D coordinates. The problem we had with
the Ascension Bird was an annoying jitter in the graphical display of the virtual world that
could not be overcome. This jitter at a minimum disoriented the user and made movement
and selection difficult.

The final method of navigation uses a standard 2D mouse. Whenever the user
wants to move forward, the left mouse button is pressed and held down. If the user wants
to move backward, then the right mouse button is used instead. While either button is

pressed, a red square appears in the middle of the screen. To turn, the user moves the mouse

16

cursor outside of the red box. If the cursor is moved to the right, movement is to the right.

If the cursor is moved to the left, then movement is to the left. The rate at which the turning
occurs is proportional to the distance the cursor is moved away from the edge of the box.
The elevation of the vehicle is changed in a similar fashion by moving the cursor either
above or below the edges of the box. To select any objects off the screen, the user simply
positions the cursor over the anchor and presses and releases the middle mouse button. This
method is easy to use and utilizes an input device that is found on virtually every

workstation.

17

IV. HYPER-NPSNET DATA STRUCTURES

At the heart of Hyper-NPSNET, lie the data structures that make it all possible. Since
Hyper-NPSNET is written in C++, these data structures correspond to C++ classes. The
discussion that follows covers the classes for the hypersystem as well as the classes for the

Motif based GUI. Sample C++ code is presented.

A. HYPERSYSTEM CLASSES

There are three levels of C++ classes that make up the hypersystem. The hypersystem
is defined as the fundamental data structures that hold individual node information and all
the underlying links that enforce the association between anchors and information nodes.
At the lowest level resides the HyperNode. The HyperNode is the basic information
containing entity of the system. An example of a HyperNode is a reference to an audio file
that contains an audio track. Above the HyperNode is the Anchor. The anchor contains
(“has a”) up to four HyperNodes that can represent the audio, video, graphic and text
information associated with the anchor. The anchor is like a hub with different kinds of
information packets attached. A collection of anchors represents the HyperSystem. It is
through the HyperSystem level that individual anchors are created, modified or destroyed.
A fourth class is implemented that contains system-wide global information. This is the
Global class. This class is responsible for maintaining system state information. In the

following four sections, these classes are discussed in detail.

1. Hypernode

As mentioned above, the HyperNode is the fundamental information entity of the
system. The HyperNode Class declaration contains private variables for maintaining node

information (see Figure 3).

18

class HyperNode {

unsigned id; Il 'a unique identifier
unsigned type; I/ type of node
char filename[80]; [filename pointed to
static unsigned id_generator; /[auto init to zero

public:
HyperNode();

HyperNode (const HyperNode&);

char* getFilename();

unsigned getld() {return id;}

unsigned getType() {return type;}
HyperNode& operator=(const HyperNode&);
void resetldGenerator() {id_generator = 0;}
void setFilename(char*);

void setType(unsigned t) {type =t;}

Figure 3: HyperNode Class Declaration

Included in the node information is the node’s identificatin,The node id can
be retrieved using thgetld() access function, but cannot be set. The node id is a unique
identifier generated automatically by the node constructor through the use of
id_generator [Wilson92]. Also maintained is the node typsme describes what kind
of information is held by the node. Currently there are six recognizable node types:
NODE_UNKNOWN, NODE_GENERAL, NODE_AUDIO, NODE_VIDEO,
NODE_GRAPHIC and NODE_TEXT. NODE_UNKNOWN and NODE_GENERAL are
not currently implemented, but are defined for future use. The other node types are self
explanatory. The node type can be retrieved usingdtigpe() = member function and
set through use of treetType() member function. A node points to a file that contains
either audio, video, graphics or textual data. The filename pointed to is maintained in
filename[80] . The filename string can be set watitFilename() and retrieved with

getFilename()

19

2. Anchor

The anchors correspond to the abstract information containers. It is the bringing
together of the information within the HyperNodes that makes the Anchor. Associated with
any anchor, there can be audio, video, graphic or textual information attached. The user
merely asks to see and/or hear the information and it is presented. To make this work, the
anchor needs hooks in up to four HyperNodes. As shown in the Anchor declaration (see
Figure 4), an instance of an anchor stores the HyperNode ids internally. This is done in the
audio , video , graphic andtext private variables. These are unsigned integers and
merely hold the node id that was automatically generated by the node constructor (see
“Hypernode” in Section IV.A.1.). In all four, the unsigned integer id can be retrieved and
set with the appropriate access functions. For instance, to set or get the video node’s id,
setVideo() orgetVideo() is used.

As mentioned earlier, the node ids are unique and this guarantees no collisions
on the node level. This minimizes the amount of information necessary to uniquely identify
the appropriate information. In addition to node info, the anchor must maintain information
specific to itself. This includes it's own id, which is used later to identify the current anchor
and facilitates retrieval of relevant information in a timely fashion. The anchor id, like the
node id, can be retrieved witletld() but not set. The anchor type is retrieved with
getType () and set witlsetType() .type represents the kind of information object we
are dealing with. Currently only TERRAIN anchor types are implemented. TERRAIN
anchors are attached to the terrain and once created cannot be moved. Additional types
might include VEHICLE and TEMPORAL anchors. A vehicle anchor, then, is an
information object attached to a potentially moving vehicle that carries information with it.
The goal here is to have information available pertaining to the weapons systems or design
capabilities of various vehicles that move around on the terrain and that may be engaged at
different times throughout the simulation. Temporal anchors allow for the creation o